B.E. Semester-III (E.C.) Question Bank

(Digital Electronics)

All questions carry equal marks (10 marks)

Q. 1	Do as directed:						
	1.	$(516)_{7}=(\quad)_{10}$		$)_{16}$			
	2.	$(250.5)_{10}=(\quad)_{8}=$		${ }_{8}=(\quad)_{4}$			
	3.	$(2 \mathrm{ED})_{16}=(\quad)_{8}=($		$)_{2}$			
	4.	(38) $)_{9}=(\quad)_{5}=($					
	5.	Obtain the 9's and 10's complement of (864) 10 .					
Q. 2	Do as directed:						
	1.	$(198)_{12}+(12121)_{3}=(\quad)_{8}$					
	2.	Determine the value of base x if $(50)_{\mathrm{x}}=(203)_{4}$					
	3.	Given the two binary numbers $\mathrm{X}=1010101$ and $\mathrm{Y}=1001011$, perform the subtraction $\mathrm{X}-\mathrm{Y}$ using 1's complements.					
	4.	Using 10's complement perform (4572) 10-($^{(2102)_{10}}$.					
	5.	Multiply the (135) ${ }_{6}$ and (43) ${ }_{6}$ in the given base without converting to decimal.					
Q. 3	Do as directed:						
	1.	$(347)_{10}=(\quad)_{2}=($		$)_{8}=($	$)_{5}=($	$)_{16}=($	$)_{\text {BCD }}$
	2.	$(11010111.110)_{2}=($			$)_{12}=($	$)_{16}$	
	3. ${ }^{\text {a }}$ as directed:						
Q-4							
	1.	Multiply the (267) $)_{8}$ and $(71)_{8}$ in the given base without converting to decimal.					
	2.	$(103)_{4}+(50)_{7}=(\quad)_{9}$					
	3.	Determine the value of base b if $(211)_{b}=(152)_{8}$					
	4.	Given the two binary numbers $\mathrm{X}=11010$ and $\mathrm{Y}=1101$, perform the subtraction X - Y using 2's complement.					
	5.	Using 9's complement perform (582) ${ }_{10}$-(1002) ${ }_{10}$.					
Q. 5	(a)	Define duality principal and explain it with the help of example. Find the complements of the functions $\mathbf{F} \mathbf{1}=\mathbf{x}^{\prime} \mathbf{y z} \mathbf{z}^{\prime}+\mathbf{x}^{\prime} \mathbf{y}^{\prime} \mathbf{z}$ and $\mathbf{F} \mathbf{2}=\mathbf{x}\left(\mathbf{y}^{\prime} \mathbf{z}^{\prime}+\mathbf{y z}\right)$ by taking their duals and complementing each literal.					
	(b)	Demonstrate by means of truth tables the validity of the De Morgan's theorems for three variables. Find the complement of $\mathbf{F}=\mathbf{a}\left(\mathbf{b}^{\prime} \mathbf{c} \mathbf{\prime}+\mathbf{b c}\right)$ by applying De Morgan's theorem as many times as necessary.					
Q. 6	(a)	Demonstrate by means of truth table the validity of the distributive law of + over \cdot. Also show that the NOR and NAND operators are not associative.					
	(b)	Prove that a positive-logic AND gate is a negative-logic OR gate and vice-versa.					
Q. 7	(a)	Express the Boolean function $\mathbf{F}(\mathbf{p}, \mathbf{q}, \mathbf{r}, \mathbf{s})=\mathbf{s}(\mathbf{p}+\mathbf{q})+\mathbf{q} ' \mathbf{s}$ in a sum of minterms and a product of maxterms.					
	(b)	Given the Boolean function: $\mathbf{F}=\mathbf{x y} \mathbf{+} \mathbf{x}^{\prime} \mathbf{y}^{\prime}+\mathbf{y}^{\prime} \mathbf{z}$					
		1. Implement it with only OR and NOT gates.					
		2. Implement it with only AND and NOT gates.					
Q. 8	(a)	What is the difference between canonical form and standard form? Express the Boolean function $\mathbf{F}(\mathbf{p}, \mathbf{q}, \mathbf{r})=(\mathbf{p q} \mathbf{+})(\mathbf{q}+\mathbf{p r})$ in a sum of minterms and a product of maxterms.					
	(b)	Realize 2 input X-OR gate using NOR gates only.					
Q. 9	(a)	Simplify the following Boolean expressions by manipulation of Boolean algebra.					
		1. $\quad \mathrm{F}(\mathrm{x}, \mathrm{y}, \mathrm{z})=\mathrm{xy}+\mathrm{xyz}+\mathrm{xyz}$ ' $+\mathrm{x}^{\prime} \mathrm{yz}$					
		2. $\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})=\mathrm{A}^{\prime} \mathrm{C}\left(\mathrm{A}^{\prime} \mathrm{BD}\right)^{\prime}+\mathrm{A}^{\prime} \mathrm{BC}^{\prime} \mathrm{D}^{\prime}+\mathrm{AB}^{\prime} \mathrm{C}$					

	(b)	Simplify the Boolean function $\mathbf{F}(\mathbf{w}, \mathbf{x}, \mathbf{y}, \mathbf{z})=\mathbf{w}^{\prime} \mathbf{x}^{\prime} \mathbf{z} \mathbf{z}^{\prime}+\mathbf{w}^{\prime} \mathbf{y z}+\mathbf{w} \mathbf{\prime} \mathbf{x y}$ using don't care conditions $\mathbf{d}=\mathbf{w}^{\prime} \mathbf{x y} \mathbf{y}^{\mathbf{z}} \mathbf{+} \mathbf{w} \mathbf{y z} \mathbf{+} \mathbf{w} \mathbf{x}^{\prime} \mathbf{z}$ ' in (i) sum of products and (ii) product of sums using Karnaugh map.	
Q. 10	(a)	Prove that:	
		1.	+x' $y+w y=w x+x^{\prime} y$
		2.	$(\mathrm{AB}+\mathrm{C}+\mathrm{D})\left(\mathrm{C}^{\prime}+\mathrm{D}\right)\left(\mathrm{C}^{\prime}+\mathrm{D}+\mathrm{E}\right)=\mathrm{ABC}^{\prime}+\mathrm{D}$
		3.	$(A+B)^{\prime}\left(A^{\prime}+B^{\prime}\right)^{\prime}=0$
	(b)	Simplify the function $F(A, B, C, D, E)=\Sigma m(0,2,4,6,9,11,13,15,17,21,25,27,29,31)$ using Karnaugh map.	
Q. 11	(a)	Reduce the following Boolean expressions to the required number of literals.	
		1.	$\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})=(\mathrm{A}+\mathrm{C}+\mathrm{D})\left(\mathrm{A}+\mathrm{C}+\mathrm{D}^{\prime}\right)\left(\mathrm{A}+\mathrm{C}^{\prime}+\mathrm{D}\right)\left(\mathrm{A}+\mathrm{B}^{\prime}\right)$ to four literals.
		2.	
	(b)	Simplify the Boolean functions $\mathrm{F}=\mathrm{w}^{\prime}\left(\mathrm{x}^{\prime} \mathrm{y}+\mathrm{x}^{\prime} \mathrm{y}^{\prime}+\mathrm{xyz}\right)+\mathrm{x}^{\prime} \mathrm{z}^{\prime}(\mathrm{y}+\mathrm{w})$ using don'tcare conditions $d=w^{\prime} x\left(y^{\prime} z+y z^{\prime}\right)+w y z$ in (i) sum of products and (ii) product of sums using Karnaugh map.	
Q. 12	(a)	Simplify the following Boolean expressions.	
		1.	$F(w, x, y, z)=x y+w y^{\prime}+w x+x y z$
		2.	$\mathrm{F}(\mathrm{p}, \mathrm{q}, \mathrm{r}, \mathrm{s})=(\mathrm{p}, \mathrm{q})(\mathrm{p}+\mathrm{q}+\mathrm{s}) \mathrm{s}^{\prime}$
	(b)	Simplify the following Boolean functions using Karnaugh map:	
		1.	$\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})=\Pi(0,1,2,3,4,10,11)$
		$\mathrm{F}(\mathrm{w}, \mathrm{x}, \mathrm{y}, \mathrm{z})=\Sigma \mathrm{m}(0,1,2,4,5,12,13,14)+$ don't care conditions $\Sigma \mathrm{d}(6,8,9)$.	
Q. 13	Write brief notes on:		
	(a)	Full adder	
	(b)	Read-Only Memory (ROM)	
Q-14	(a)	Why are NAND and NOR gates known as universal gates? Explain in detail.	
	(b)	Explain full- subtractor. Implement a full-subtractor with two half- subtractors and an OR gate.	
Q. 15	Implement Boolean functions		
	(a)	$\mathrm{F}=\left(\mathrm{A}+\mathrm{B}^{\prime}\right)(\mathrm{CD}+\mathrm{E})$ using only NAND gates.	
	(b)	$\mathrm{F}=\mathrm{A}(\mathrm{B}+\mathrm{CD})+\mathrm{BC}$ ' with only NOR gates.	
	(c)	$\mathrm{F}=\mathrm{x}^{\prime} \mathrm{y}+\mathrm{xy}{ }^{\prime}$ using only four NAND gates.	
Q. 16	Simplify the function $\mathrm{F}(\mathrm{w}, \mathrm{x}, \mathrm{y}, \mathrm{z})=\Sigma(0,1,2,8,10,11,14,15)$ using tabulation method.		
Q. 17	Using the tabulation method, obtain the simplified expression in product of sums for the Boolean function $\mathrm{F}(\mathrm{w}, \mathrm{x}, \mathrm{y}, \mathrm{z})=\Pi(1,3,5,7,13,15)$.		
Q. 18	Simplify the Boolean function $\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{E}, \mathrm{F})=\Sigma(6,9,13,18,19,25,27,29,41,45,57,61)$ using tabulation method.		
Q. 19	Write short notes on:		
	(a)	Design of BCD-to-excess-3 code converter	
	(b)	Programmable Logic Array (PLA)	
Q. 20	Differentiate between combinational logic circuit and sequential logic circuit. Design a combinational circuit that accepts a three-bit number and generates an output binary number equal to the square of the input number.		
Q. 21	Design a combinational circuit whose input is a four-bit number and whose output is the 2's complement of the input number.		
Q. 22	Design a combinational circuit that converts a decimal digit from the $2,4,2,1$ code to the 8,4,-2,-1 code.		
Q. 23	Design a combinational circuit that multiplies by 5 an input decimal digit represented in BCD. The output is also in BCD. Show that the output can be obtained from the input lines without using any logic gates.		
Q. 24	Design a combinational circuit that converts a four-bit reflected-code number to a fourbit binary number. Implement the circuit with exclusive-OR gates.		

Q. 25	Write note on "Binary parallel adder". Also draw logic diagram of a look-ahead carry generator and describe 4-bit full adder with look-ahead carry in detail.
Q. 26	(a) Construct BCD adder using two 4-bit binary parallel adder and logic gates.
	(b) Explain 4-bit magnitude comparato
Q. 27	Describe decoders using suitable example and design a BCD-to-decimal decoder.
Q. 28	Describe digital multiplexer in detail using suitable example. Obtain an 8×1 multiplexer with a dual 4 -line to 1 -line multiplexers having separate enable inputs but common selection lines. Use block diagram construction.
Q. 29	(a) Construct a 5×32 decoder with four 3×8 decoder and a 2×4 decoder. Use block diagram construction only.
	(b) $\begin{aligned} & \text { Implement } \\ & \text { multiplexer. }\end{aligned}$ Boolean function $\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})=\Sigma \mathrm{m}(0,1,3,4,8,9,15)$ using $8: 1$
Q	(a) Design 3-bit binary counter using T flip-flop.
	(b) Discuss "Digital IC logic families and characteristic of basic gate in each family".
Q. 31	Explain race-around condition in relation to the J-K flip-flops using timing relationships. Draw the clocked Master-Slave J-K flip-flop configuration and explain how it removes race-around condition in J-K flip-flops.
Q. 32	Describe triggering of flip-flops and explain operation of an edge triggered D flip-flop.
Q. 33	Write state equations for all flip-flops. Design a sequential circuit with JK flip-flops to satisfy the following state equations: $\begin{aligned} & \mathrm{A}(\mathrm{t}+1)=\mathrm{A}^{\prime} \mathrm{B}^{\prime} \mathrm{CD}+\mathrm{A}^{\prime} \mathrm{B}^{\prime} \mathrm{C}+\mathrm{ACD}+\mathrm{AC}^{\prime} \mathrm{D}^{\prime} \\ & \mathrm{B}(\mathrm{t}+1)=\mathrm{A}^{\prime} \mathrm{C}+\mathrm{CD} \mathrm{D}^{\prime}+\mathrm{A}^{\prime} \mathrm{BC}^{\prime} \\ & \mathrm{C}(\mathrm{t}+1)=\mathrm{B} \\ & \mathrm{D}(\mathrm{t}+1)=\mathrm{D}^{\prime} \\ & \hline \end{aligned}$
Q. 34	Draw the logic diagram of clocked RS Flip-Flop and explain its operation. Design a counter with the following binary sequence: $0,1,3,2,6,4,5,7$ and repeat. Use RS flipflops.
Q. 35	Explain 4-bit synchronous up-down binary counter.
Q. 36	Describe shift registers and explain 4-bit bidirectional shift register with parallel load.
Q. 37	Differentiate between synchronous counter and ripple counter. Explain BCD ripple counter with logic diagram and timing diagram.
Q. 38	Write Short notes on:
	1. Complementary MOS (CMOS) 2. BCD synchronous counter
Q.	Write Short notes on:
	1. Emitter-coupled Logic (ECL) 2. Ring counter
Q	Write Short notes on:
	1. Schottky TTL gate 2. 4-bit binary ripple counter

