B.E. Semester-III (E.C.) Question Bank

(Digital Electronics)

All questions carry equal marks (10 marks)

Q.1	Do a	as directed:
	1.	$(516)_7 = ($ $)_{10} = ($ $)_{16}$
	2.	$(250.5)_{10} = ()_8 = ()_4$
	3.	$(2ED)_{16} = ()_8 = ()_2$
	4.	$(38)_{9}=()_{5}=()_{2}$
	5.	Obtain the 9's and 10's complement of $(864)_{10}$.
Q.2	Do a	as directed:
	1.	$(198)_{12}+(12121)_3=()_8$
	2.	Determine the value of base x if $(50)_x = (203)_4$
	3.	Given the two binary numbers $X = 1010101$ and $Y = 1001011$, perform the
		subtraction X-Y using 1's complements.
	4.	Using 10's complement perform $(4572)_{10}$ - $(2102)_{10}$.
	5.	Multiply the $(135)_6$ and $(43)_6$ in the given base without converting to decimal.
0.3	Do a	as directed:
	1.	$(347)_{10} = ($ $)_2 = ($ $)_8 = ($ $)_5 = ($ $)_{16} = ($ $)_{BCD}$
	2.	$(11010111.110)_2 = ($ $)_{10} = ($ $)_{12} = ($ $)_{16}$
	3.	Obtain the 9's and 10's complement of $(389.61)_{10}$.
Q-4	Do a	as directed:
	1.	Multiply the $(267)_8$ and $(71)_8$ in the given base without converting to decimal.
	2.	$(103)_4 + (50)_7 = ($) ₉
	3.	Determine the value of base b if $(211)_b = (152)_8$
	4.	Given the two binary numbers $X = 11010$ and $Y = 1101$, perform the subtraction
		X-Y using 2's complement.
	5.	Using 9's complement perform $(582)_{10}$ - $(1002)_{10}$.
Q.5	(a)	Define duality principal and explain it with the help of example. Find the
		complements of the functions $F1 = x'yz' + x'y'z$ and $F2 = x(y'z'+yz)$ by taking
		their duals and complementing each literal.
	(b)	Demonstrate by means of truth tables the validity of the De Morgan's theorems for
		three variables. Find the complement of $\mathbf{F} = \mathbf{a}(\mathbf{b'c'}+\mathbf{bc})$ by applying De Morgan's
		theorem as many times as necessary.
Q.6	(a)	Demonstrate by means of truth table the validity of the distributive law of + over •.
		Also show that the NOR and NAND operators are not associative.
	(b)	Prove that a positive-logic AND gate is a negative-logic OR gate and vice-versa.
Q.7	(a)	Express the Boolean function F (p , q , r , s)= s (p '+ q)+ q 's in a sum of minterms and a
		product of maxterms.
	(b)	Given the Boolean function: F = xy + x'y' + y'z
		1. Implement it with <i>only</i> OR and NOT gates.
		2. Implement it with <i>only</i> AND and NOT gates.
Q.8	(a)	What is the difference between canonical form and standard form? Express the
		Boolean function $F(p, q, r) = (pq+r)(q+pr)$ in a sum of minterms and a product of
		maxterms.
	(b)	Realize 2 input X-OR gate using NOR gates only.
Q.9	(a)	Simplify the following Boolean expressions by manipulation of Boolean algebra.
		1. $F(x,y,z)=xy+xyz+x'yz$
		2. F(A,B,C,D) = A'C(A'BD)' + A'BC'D' + AB'C

	(b)	Simplify the Boolean function F(w,x,y,z)=w'x'z'+w'yz+w'xy using don't care
		conditions d=w'xy'z+wyz+wx'z' in (i) sum of products and (ii) product of sums
0.10		using Karnaugh map.
Q.10	(a)	Prove that:
		$\begin{array}{c} \mathbf{I} WX + X' \mathbf{y} + Wy = WX + X' \mathbf{y} \\ \hline 2 (A \mathbf{D} + \mathbf{C} + \mathbf{D}) (\mathbf{C}^2 + \mathbf{D} + \mathbf{C}) = A \mathbf{D} \mathbf{C}^2 + \mathbf{D} \\ \end{array}$
		2. $(AB+C+D)(C+D)(C+D+E)=ABC+D$
	(b)	3. $[(A+B)(A+B)] = 0$ Simulify the function $E(A, D, C, D, E) = \sum m(0, 2, 4, 6, 0, 11, 12, 15, 17, 21, 25, 27, 20, 21)$
	(U)	Simplify the function $F(A, B, C, D, E) = 2 \ln(0, 2, 4, 0, 9, 11, 15, 15, 17, 21, 25, 27, 29, 51)$ using Karnaugh man
0.11	(a)	Reduce the following Boolean expressions to the required number of literals.
X ¹¹¹	(u)	1. $F(A.B.C.D)=(A+C+D)(A+C+D')(A+C'+D)(A+B')$ to four literals.
		2. $F(w,x,y,z) = [(yz)'+w]'+w+yz+wx$ to three literals
	(b)	Simplify the Boolean functions $F = w'(x'y + x'y' + xyz) + x'z'$ (y+w) using don't-
		care conditions $d=w'x(y'z + yz') + wyz$ in (i) sum of products and (ii) product of
		sums using Karnaugh map.
Q.12	(a)	Simplify the following Boolean expressions.
		1. $F(w,x,y,z) = xy + wy' + wx + xyz$
		2. $F(p, q, r, s) = (p'+q) (p+q+s)s'$
	(b)	Simplify the following Boolean functions using Karnaugh map:
		1. $F(A,B,C,D)=II(0,1,2,3,4,10,11)$
0.12	XX 7 •	2. $F(w,x,y,z)=\Sigma m(0,1,2,4,5,12,13,14) + don't care conditions \Sigma d(6,8,9).$
Q.13	wri	Explication
	(a)	Full adder Pead Only Memory (POM)
0-14	(U) (a)	Why are NAND and NOR gates known as universal gates? Explain in detail
Q-14	(a) (h)	Explain full- subtractor Implement a full-subtractor with two half- subtractors and
	(0)	an OR gate.
0.15	Impl	ement Boolean functions
	(a)	F=(A+B')(CD+E) using only NAND gates.
	(b)	F=A(B+CD)+BC' with only NOR gates.
	(c)	F=x'y+xy' using only four NAND gates.
Q.16	Simp	blify the function $F(w,x,y,z)=\Sigma(0,1,2,8,10,11,14,15)$ using tabulation method.
Q.17	Usin	g the tabulation method, obtain the simplified expression in product of sums for the
0.10	Bool	ean function $F(w,x,y,z) = \Pi(1,3,5,7,13,15)$.
Q.18	Simp	blify the Boolean function $F(A,B,C,D,E,F)=\Sigma(6,9,13,18,19,25,27,29,41,45,57,61)$
0.10	USINg Write	tabulation method.
Q.19	(a)	Design of BCD-to-excess-3 code converter
	(a) (h)	Programmable Logic Array (PLA)
0.20	Diffe	erentiate between combinational logic circuit and sequential logic circuit. Design a
X .= °	com	pinational circuit that accepts a three-bit number and generates an output binary
	num	ber equal to the square of the input number.
Q.21	Desi	gn a combinational circuit whose input is a four-bit number and whose output is the
	2's c	omplement of the input number.
Q.22	Desi	gn a combinational circuit that converts a decimal digit from the 2,4,2,1 code to the
	8,4,-	2,-1 code.
Q.23	Desi	gn a combinational circuit that multiplies by 5 an input decimal digit represented in
	BCD	D. The output is also in BCD. Show that the output can be obtained from the input
0.24	Ines	without using any logic gates.
Q.24	bit h	in a comonational circuit that converts a four-oil reflected-code number to a four-
	UIL U	mary number. Implement the encult with exclusive-OK gates.

0.25	Write note on "Binary parallel adder" Also draw logic diagram of a look-ahead carry		
Q.23	generator and describe 4-bit full adder with look-ahead carry in detail		
0.26	(a) Construct BCD adder using two 4-bit binary parallel adder and logic gates		
Q .20	(h) Explain 4-bit magnitude comparator.		
0.27	Describe decoders using suitable example and design a BCD-to-decimal decoder		
0.28	Describe digital multiplever in detail using suitable example. Obtain an 8×1 multiplever		
Q.20	with a dual 4-line to 1-line multiplexers having separate enable inputs but common		
	selection lines. Use block diagram construction.		
0.29	(a) Construct a 5 \times 32 decoder with four 3 \times 8 decoder and a 2 \times 4 decoder. Use block		
-	diagram construction only.		
	(b) Implement Boolean function $F(A,B,C,D)=\Sigma m(0,1,3,4,8,9,15)$ using 8:1		
	multiplexer.		
Q.30	(a) Design 3-bit binary counter using T flip-flop.		
	(b) Discuss "Digital IC logic families and characteristic of basic gate in each family".		
Q.31	Explain race-around condition in relation to the J-K flip-flops using timing relationships.		
	Draw the clocked Master-Slave J-K flip-flop configuration and explain how it removes		
	race-around condition in J-K flip-flops.		
Q.32	Describe triggering of flip-flops and explain operation of an edge triggered D flip-flop.		
Q.33	Write state equations for all flip-flops. Design a sequential circuit with JK flip-flops to		
	satisfy the following state equations:		
	A(t+1) = A'B'CD + A'B'C + ACD + AC'D'		
	B(t+1)=A'C+CD'+A'BC'		
	C(t+1)=B		
0.04			
Q.34	Draw the logic diagram of clocked RS Flip-Flop and explain its operation. Design a		
	counter with the following binary sequence: 0, 1, 3, 2, 6, 4, 5, 7 and repeat. Use RS flip-		
0.25	Tiops.		
Q.35	Explain 4-bit synchronous up-down binary counter.		
Q.30	Describe sint registers and explain 4-on oldifectional sint register with parallel load.		
Q.37	counter with logic diagram and timing diagram		
0.38	Write Short notes on:		
V .50	1 Complementary MOS (CMOS) 2 BCD synchronous counter		
0.39	Write Short notes on:		
2.07	1. Emitter-coupled Logic (ECL) 2. Ring counter		
0.40	Write Short notes on:		
C	1. Schottky TTL gate 2. 4-bit binary ripple counter		